Solved Examples: Implicit Differentiation

(1.) WASSCE-FM Given that $x^2 + y^2 = 2pxy$, where p is a constant, find $\dfrac{dy}{dx}$


Implicit Differentiation
Function Derivative
$x^2$ $ 2x\dfrac{dx}{dx} \\[5ex] 2x $
$y^2$ $ 2y\dfrac{dy}{dx} $
$2pxy$ $ \underline{\text{Product Rule}} \\[3ex] Let\;\;u = 2px \hspace{3em} v = y \\[3ex] \text{Note that p is a constant} \\[3ex] \dfrac{du}{dx} = 2p \\[5ex] \dfrac{dv}{dx} = \dfrac{dy}{dx} \\[5ex] \implies \\[3ex] 2px * \dfrac{dy}{dx} + y * 2p \\[5ex] 2px\dfrac{dy}{dx} + 2py $

$ x^2 + y^2 = 2pxy \\[4ex] 2x + 2y\dfrac{dy}{dx} = 2px\dfrac{dy}{dx} + 2py \\[5ex] 2y\dfrac{dy}{dx} - 2px\dfrac{dy}{dx} = 2py - 2x \\[5ex] \dfrac{dy}{dx}(2y - 2px) = 2py - 2x \\[5ex] \dfrac{dy}{dx} = \dfrac{2py - 2x}{2y - 2px} \\[5ex] = \dfrac{2(py - x)}{2(y - px)} \\[5ex] = \dfrac{py - x}{y - px} $
(2.) Find the derivative of $x^6y + y^6x = 9\:\:wrt\:\:x$


Implicit Differentiation, Product Rule, Power Rule

$ x^6y + y^6x = 9 \\[3ex] \dfrac{d(x^6y)}{dx} = x^6 * \dfrac{dy}{dx} + y * 6x^5 ...Product\:\:Rule \\[5ex] \dfrac{d(x^6y)}{dx} = x^6\dfrac{dy}{dx} + 6x^5y \\[5ex] \dfrac{d(y^6x)}{dx} = y^6 * 1 + x * 6y^5\dfrac{dy}{dx} ...Product\:\:Rule \\[5ex] \dfrac{d(y^6x)}{dx} = y^6 + 6xy^5\dfrac{dy}{dx} \\[5ex] \dfrac{d(9)}{dx} = 0 \\[5ex] \rightarrow x^6\dfrac{dy}{dx} + 6x^5y + y^6 + 6xy^5\dfrac{dy}{dx} = 0 \\[5ex] x^6\dfrac{dy}{dx} + 6xy^5\dfrac{dy}{dx} = 0 - 6x^5y - y^6 \\[5ex] \dfrac{dy}{dx}(x^6 + 6xy^5) = -6x^5y - y^6 \\[5ex] \dfrac{dy}{dx} = \dfrac{-6x^5y - y^6}{x^6 + 6xy^5} \\[5ex] \dfrac{dy}{dx} = -\dfrac{(6x^5y + y^6)}{x^6 + 6xy^5} $
(3.)


(4.)


(5.)


(6.)


(7.)


(8.)


(9.)


(10.)






Top




© 2019   SamDom4Peace Designs.