$ (1.)\:\: \underline{\text{Power Rule}} \\[3ex] a, n \text{ are constants} \\[3ex] y = ax^n \\[3ex] \dfrac{dy}{dx} = nax^{n - 1} \\[7ex] (2.)\:\: \underline{\text{Sum/Difference Rule}} \\[3ex] y = m \pm n \pm k \\[3ex] m = f(x);\hspace{2em} n = f(x);\hspace{2em} k = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{dm}{dx} \pm \dfrac{dn}{dx} \pm \dfrac{dk}{dx} \\[7ex] (3.)\:\: \underline{\text{Chain Rule}} \\[3ex] y = f(m) \\[3ex] m = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{dy}{dm} * \dfrac{dm}{dx} \\[7ex] Also: \\[3ex] y = f(m) \\[3ex] m = f(n) \\[3ex] n = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{dy}{dm} * \dfrac{dm}{dn} * \dfrac{dn}{dx} \\[7ex] Also: \\[3ex] y = f(m) \\[3ex] m = f(n) \\[3ex] n = f(k) \\[3ex] k = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{dy}{dm} * \dfrac{dm}{dn} * \dfrac{dn}{dk} * \dfrac{dk}{dx} \\[7ex] ...\text{and so on and so forth} \\[7ex] (4.)\:\: \underline{\text{Product Rule}} \\[3ex] y = m * n \\[3ex] m = f(x);\hspace{2em} n = f(x) \\[3ex] \dfrac{dy}{dx} = m\dfrac{dn}{dx} + n\dfrac{dm}{dx} \\[7ex] (5.)\:\: \underline{\text{Quotient Rule}} \\[3ex] y = \dfrac{p}{k} \\[5ex] p = f(x);\hspace{2em} k = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{k\dfrac{dp}{dx} - p\dfrac{dk}{dx}}{k^2} $
$ a \text{ is a positive constant} \\[3ex] k \text{ is a constant} \\[3ex] (1.)\:\: y = e^x \\[3ex] \dfrac{dy}{dx} = e^x \\[7ex] (2.)\;\; y = e^{kx} \\[3ex] \dfrac{dy}{dx} = ke^{kx} \\[7ex] (3.)\;\; y = e^{-kx} \\[3ex] \dfrac{dy}{dx} = -ke^{kx} \\[7ex] (4.)\:\: y = a^x \\[3ex] \dfrac{dy}{dx} = a^x \ln a \\[7ex] $
$ a \text{ is a positive constant} \\[3ex] k \text{ is a constant} \\[3ex] (1.)\:\: y = \ln x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x} \\[7ex] (2.)\:\: y = \log_a x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x \ln a} \\[7ex] (3.)\:\: y = \ln |x| \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x} \\[7ex] (4.)\:\: y = \log_a |x| \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x \ln a} \\[7ex] $
$ (1.)\:\: y = \sin x \\[3ex] \dfrac{dy}{dx} = \cos x \\[7ex] (2.)\:\: y = \cos x \\[3ex] \dfrac{dy}{dx} = -\sin x \\[7ex] (3.)\:\: y = \tan x \\[3ex] \dfrac{dy}{dx} = \sec^2 x \\[7ex] (4.)\:\: y = \csc x \\[3ex] \dfrac{dy}{dx} = -\csc x \cot x \\[7ex] (5.)\:\: y = \sec x \\[3ex] \dfrac{dy}{dx} = \sec x \tan x \\[7ex] (6.)\:\: y = \cot x \\[3ex] \dfrac{dy}{dx} = -\csc^2 x $
$ (1.)\:\: y = \sin^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{\sqrt{1 - x^2}} \\[7ex] (2.)\:\: y = \cos^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{\sqrt{1 - x^2}} \\[7ex] (3.)\;\; y = \tan^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{1 + x^2} \\[7ex] (4.)\:\: y = \csc^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{|x|\sqrt{x^2 - 1}} \\[7ex] (5.)\:\: y = \sec^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{|x|\sqrt{x^2 - 1}} \\[7ex] (6.)\;\; y = \cot^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{1 + x^2} \\[7ex] $
$ (1.)\:\: y = \sin hx \\[3ex] \dfrac{dy}{dx} = \cos hx \\[7ex] (2.)\:\: y = \cos hx \\[3ex] \dfrac{dy}{dx} = \sin hx \\[7ex] (3.)\;\; y = \tan x \\[3ex] \dfrac{dy}{dx} = \sec^2 hx \\[7ex] (4.)\;\; y = \csc hx \\[3ex] \dfrac{dy}{dx} = -\csc hx \cot hx \\[7ex] (5.)\;\; y = \sec hx \\[3ex] \dfrac{dy}{dx} = -\sec hx \tan hx \\[7ex] (6.)\;\; y = \cot hx \\[3ex] \dfrac{dy}{dx} = -\csc^2 hx \\[7ex] $
$ (1.)\:\: y = \sin h^{-1}x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{\sqrt{x^2 + 1}} \\[7ex] (2.)\:\: y = \cos h^{-1}x \;\;\;\;\;\;where:\;\; x\gt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{\sqrt{x^2 - 1}} \\[7ex] (3.)\;\; y = \tan h^{-1}x \;\;\;\;\;\;where:\;\; |x| \lt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{1 - x^2} \\[7ex] (4.)\;\; y = \csc h^{-1}x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{|x|\sqrt{x^2 + 1}} \\[7ex] (5.)\;\; y = \sec h^{-1}x \;\;\;\;\;\;where:\;\; 0\lt x \lt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{x\sqrt{1 - x^2}} \\[7ex] (6.)\;\; y = \cot h^{-1}x \;\;\;\;\;\;where:\;\; |x| \gt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{1 - x^2} \\[7ex] $
$ (1.)\:\: y = |x| \\[3ex] \dfrac{dy}{dx} = \dfrac{|x|}{x} \\[7ex] $
$ x_{n + 1} = x_n - \dfrac{f(x)}{f'(x)} $
© 2019 SamDom4Peace Designs.